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Abstract
The matrix exponential plays an important role in solving systems of
linear differential equations. We will give a general expansion of the
matrix exponential S = exp[λ(A + B)] as Sn,m = eλbnδn,m +

∑∞
q=1∑N

l1=0 · · ·∑N
lq−1=0 an,l1 · · · alq−1,mC

(q)

n,l1,...,lq−1,m
(B, λ) with C

(q)

n,l1,...,lq−1,m
(B, λ)

being an analytical expression in bn, bl1 , bl2 , . . . blq−1 , bm, and the scalar
coefficient λ. A is a general N × N matrix with elements an,m and B a diagonal
matrix with elements bn,m = bnδn,m along its diagonal. The convergence of
this expansion is shown to be superior to the Taylor expansion in terms of
(λ[A + B]), especially if elements of B are larger than the elements of A. The
convergence and possibility of solving the phase problem through multiple
scattering is demonstrated by using this expansion for the computation of
large-angle convergent beam electron diffraction pattern intensities.

PACS numbers: 03.65.Nk, 02.30.−f

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Mathematical models of many problems in biology, physics and economics involve systems
of linear, constant coefficient equations

δx

δλ
(λ) = Ax(λ).

Such systems of equations have the general solution

x(λ) = eλAx(0).
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As an example the solution of probably the most fundamental equation in modern physics, the
Schrödinger equation,

i
δ�(�r, t)

δt
= H�(�r, t)

falls into this class, where the Hamiltonian H = h̄/(2m|e|)∇2 + V is a square matrix that can
be split into a potential energy term, the matrix V and a diagonal matrix containing the kinetic
energy terms. Assuming that the wavefunction �(�r, t) = �(�r) exp(2π i[kz + Et/h]) has the
form of a modulated plane wave and the second-order derivative of �(�r) in the direction of its
propagation (z) is negligible, the time-independent Schrödinger equation can also be written
as a system of linear differential equations in z

δ�(�r)
δz

=
[(

i∇2
xy

4πkz

−
�kxy

kz

· �∇xy

)
+

i

4πkz

V (�r)
]

�(�r) = 0 (1)

where we have the general matrix of potential energy terms iV/(4πkz) and a diagonal matrix
for the kinetic energy. In reciprocal space the differential operators ∇2

xy and ∇xy turn into
linear operators, making this also a problem of the class treated in this paper. A prominent
example would be multiple scattering of high energy particles in matter, or rather its inversion,
where the problem is that of determining the (periodic) scattering potential V (�r) from the
scattered radiation, which is equivalent to finding A from the moduli of the entries of a single
column of the matrix S = exp(λ[A + B]), where B is a diagonal matrix with known elements.
Varying the elements in B lets us set up many of these systems of equations, but unless we
can find some linear approximation for them, they will still remain hard to solve directly. The
purpose of this paper is to provide a general expansion which allows us to express the matrix
exponential S = exp(λ[A + B]) as

Sn,m = eλbnδn,m +
∞∑

q=1

N∑
l1=1

· · ·
N∑

lq−1=1

an,l1 · · · alq−1,mC
(q)

n,l1,...,lq−1,m
(B, λ)

where an,m are elements of A, and C
(q)

n,l1,...,lq−1,m
(B, λ) is an expression in elements of B and λ.

The convergence of this expansion will be discussed and is shown to be superior to the
Taylor expansion in terms of (λ[A + B]), especially if the largest elements of B are larger than
the largest element of A.

This expansion provides a disentanglement of the matrix exponential into a sum of terms
containing different length products of elements of A with known coefficients. In the field of
high energy electron diffraction (HEED) in the transmission geometry, the direct inversion of
convergent beam (CBED) diffraction patterns to structure factors is a problem of exactly this
type [1]. CBED patterns, whose scattering intensity, expressed in the matrix exponential Bloch
wave formalism, provide experimental data for the moduli of certain elements in the matrix S
for fixed structure factors in the matrix A, but many different matrices B. The application of
this expansion to the inversion of CBED patterns will therefore be discussed in section 3.

2. Expansion of the matrix exponential

There exist many different ways to compute the matrix exponential S = exp(M). Nineteen of
them are listed in [2]. Computing the matrix exponential from its Taylor expansion is probably
one of the least efficient ways. However, this method involves only integer powers of matrix
elements, allowing every element of S to be expressed as a polynomial of elements in M in a
straightforward way. The matrix exponential is defined as
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S = eλ(A+B) = lim
p→∞

p∑
j=0

λj

j !
(A + B)j (2)

where

[(A + B)j ]n,m =
N∑

l1=1

N∑
l2=1

· · ·
N∑

lj−1=1

(
an,l1 + bn,l1

)(
al1,l2 + bl1,l2

) · · · (alj−1,m + blj−1,m

)

= bj
nδn,m +

j∑
q=1

N∑
l1=1

N∑
l2=1

· · ·
N∑

lq−1=1︸ ︷︷ ︸
q−1

an,l1al1,l2 · · · alq−1,m

×
j−q∑
j0=0

j−q−j1∑
j1=0

· · ·
j−q−∑q−2

i=0 ji∑
jq−1=0

bj0
n b

j1
l1

· · · bjq−1

lq−1
b

j−q−∑q−1
i=0 ji

m

= bj
nδn,m +

j∑
q=1

N∑
l1=1

N∑
l2=1

· · ·
N∑

lq−1=1

an,l1al1,l2 · · · alq−1,mC
(j−q,q)

n,l1,...,lq−1,m
(3)

and (setting l0 = n, lq = m)

C
(j,q)

l0,l1,...,lq−1,lq
= b

j

lq

j∑
j0=0

(
bl0

blq

)j0 j−j0∑
j1=0

(
bl1

blq

)j1

· · ·
j−∑q−2

i=0 ji∑
jq−1=0

(
blq−1

blq

)jq−1

︸ ︷︷ ︸
q

.

If blq−1 = blq then the last sum is just j + 1 −∑q−2
i=0 ji which gives

C
(j,q)

l0,l1,...,lq−1,lq
= δ

δblq−1


b

j+1
lq−1

j∑
j0=0

(
bl0

blq−1

)j0

· · ·
j−∑q−3

i=0 ji∑
jq−2=0

(
blq−2

blq−1

)jq−2


 .

In general we may have blq−d
= · · · = blq−2 = blq−1 = blq , 0 � d � q . Note, that we will also

encounter such degeneracies if all the elements of B are distinct since elements of B will also
be multiplied by themselves in the course of the matrix multiplication. Using

N∑
j1=0

N−j1∑
j2=0

. . .

N−∑d
i=1 ji∑

jd=0

1 = (N + 1)(N + 2) · · · (N + d)

d!
=
(

N + d

d

)
(4)

we get

C
(j,q)

l0,l1,...,lq−1,lq
= 1

d!

(
δ

δblq−d

)d


b

j+d

lq−d

j∑
j0=0

(
bl0

blq−d

)j0

· · ·
j−∑q−d−2

i=0 ji∑
jq−d−1=0

(
blq−d−1

blq−d

)jq−d−1




= 1

d!

(
δ

δblq−d

)d

bd
lq−d

C
(j,q−d)

l0,l1,...,lq−d
. (5)

An equivalent expression is given in [3]. Using the method of perturbation and passage
to the limits we will treat the degenerate case as limε1,...,εd→0 C

(j,q)

l0,l1,...,lq−1,lq
, where blq−1 =

blq (1+ε1) · · · blq−d
= blq (1+εd). We will therefore now first concentrate on the non-degenerate

case.
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If blq−1 �= blq the last sum is a finite geometric series:

C
(j,q)

l0,l1,...,lq−1,lq
= b

j

lq

j∑
j0=0

(
bl0

blq

)j0

· · ·
j−∑q−3

i=0 ji∑
jq−2=0

(
blq−2

blq

)jq−2 1 −
(

blq−1

blq

)j+1−∑q−2
i=0 ji

1 −
(

blq−1

blq

)

= 1

1 −
(

blq−1

blq

)b
j

lq

j∑
j0=0

(
bl0

blq

)j0

· · ·
j−∑q−3

i=0 ji∑
jq−2=0

(
blq−2

blq

)jq−2

−
(

blq−1

blq

)
1 −

(
blq−1

blq

)b
j

lq−1

j∑
j0=0

(
bl0

blq−1

)j0

· · ·
j−∑q−3

i=0 ji∑
jq−2=0

(
blq−2

blq−1

)jq−2

= blq−1

blq−1 − blq

C
(j,q−1)

l0,l1,...,lq−1
+

blq

blq − blq−1

C
(j,q−1)

l0,l1,...,lq−2,lq
(6)

and in particular for q = 0, 1:

C
(j,0)

l0
= b

j

l0

C
(j,1)

l0,l1
=




b
j+1
l0

bl0−bl1
+

b
j+1
l1

bl1−bl0
if bl0 �= bl1

δ
δb0

b
j+1
l0

= (j+1
1

) b
j+1
l0
bl0

if bl0 = bl1 .

In general, for non-degenerate blk (k = 0, . . . , q) we get the following result:

C
(j,q)

l0,l1,...,lq
=

q∑
k=0

b
j+q

lk

q∏
r=0
r �=k

(
blk − blr

)−1
. (7)

We will give the proof by induction

C
(j,q+1)

l0,...,lq ,lq+1
= blq

blq − blq+1

C
(j,q)

l0,...,lq
+

blq+1

blq+1 − blq

C
(j,q)

l0,...,lq−1,lq+1
=

q−1∑
k=0

b
j+q

lk

q−1∏
r=0
r �=k

(
blk − blr

)−1

×
(

blq(
blq − blq+1

)(
blk − blq

) +
blq+1(

blq+1 − blq

)(
blk − blq+1

)
)

+
b

j+q+1
lq

blq − blq+1

q−1∏
r=0

(
blq − blr

)−1
+

b
j+q+1
lq+1

blq+1 − blq

q−1∏
r=0

(
blq+1 − blr

)−1

=
q−1∑
k=0

b
j+q

lk

q−1∏
r=0
r �=k

(
blk − blr

)−1 blk(
blk − blq+1

)(
blk − blq

)

+ b
j+q+1
lq

q+1∏
r=0
r �=q

(
blq − blr

)−1
+ b

j+q+1
lq+1

q+1∏
r=0

r �=q+1

(
blq+1 − blr

)−1

=
q+1∑
k=0

b
j+q+1
lk

q+1∏
r=0
r �=k

(
blk − blr

)−1 = C
(j,q+1)

l0,...,lq ,lq+1
.
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Let us now consider the degenerate case. As already stated above, the degenerate case is
unavoidable for q > 2, even if the diagonal elements in B are distinct. Let us assume that the
values bl0, . . . , bld (d � 0) are almost degenerate, i.e. bl0 = b′

l0
+ ε0, . . . , bld = b′

l0
+ εd . Then

the degenerate case is defined by the limit ε0, . . . , εd → 0.

C
(j,q)

l0,...,lq
= lim

ε1,...,εd→0


 d∑

k=0

(
b′

l0
+ εk

)j+q
d∏

r=0
r �=k

1

εk − εr

q∏
r=d+1

1((
b′

l0
+ εk

)− blr

)

+
q∑

k=d+1

b
j+q

lk

d∏
r=0

1

blk − (b′
l0

+ εk

) q∏
r=d+1
r �=k

(
blk − blr

)−1


 .

Since the limit is independent of the direction from which we approach it, we choose
εk = ε eikφ0 , with φ0 = 2π/(d + 1), i.e. ε0 = ε, ε1 = ε eiφ0 , etc. With this choice we can
make use of the following equalities:

d∑
k=0

eikφ0 =
d∑

k=0

(eikφ0)s =
(

d∑
k=0

eikφ0

)s

= 0 s = 1, 2, . . . (8)

d∑
k1=0
k1 �=k

(eik1φ0)s = −eiskφ0 (9)

d∑
k1=0
k1 �=k

d∑
k2=0

k2 �=k,k1

. . .

d∑
ks=0

ks �=k,k1,...,ks−1

eik1φ0 eik2φ0 · · · eiksφ0 = (−1)ss! eiskφ0 (10)

d∏
k′=0
k′ �=k

1

eikφ0 − eik′φ0
= eikφ0

d + 1
. (11)

We will also define a new variable name: b0,r = b′
l0

− blr .

C
(j,q)

l0,...,lq
= lim

ε→0


 d∑

k=0




 j+q∑

j ′=0

(
j + q

j ′

)
b

j+q−j ′
l0

εj ′
eij ′kφ0


 ε−d

d∏
r=0
r �=k

1

eikφ0 − eirφ0

×
q∏

r=d+1
r �=k

1

(b0,r + ε eikφ0)




 +

q∑
k=d+1

b
j+q

lk(
blk − bl0

)d+1

q∏
r=d+1
r �=k

(
blk − blr

)−1

=
j+q∑
j ′=0

(
j + q

j ′

)
b

j+q−j ′
l0

1

(d + 1)

× lim
ε→0



∑d

k=0 eikφ0 eij ′kφ0εj ′ ∏d
k′=0
k′ �=k

∏q

r=d+1(b0,r + ε eik′φ0)

εd
∏d

k′=0

∏q

r=d+1(b0,r + ε eik′φ0)




+
q∑

k=d+1

b
j+q

lk(
blk − bl0

)d+1

q∏
r=d+1
r �=k

(
blk − blr

)−1
(12)
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using (11). For i > d the limit of the expression in square brackets is zero. For i � d we need
to evaluate that expression explicitly. Using (8) and some thought we get for the denominator

εd

d∏
k′=0

q∏
r=d+1

(b0,r + eik′φ0ε) = εd

d∏
k′=0

q∏
r=d+1

b0,r = εd

(
q∏

r=d+1

b0,r

)d+1

. (13)

The numerator needs to be expanded in powers of ε. The product

d∏
k′=0
k′ �=k

q∏
r=d+1

(b0,r + ε eik′φ0) =
d(q−d)∑

s=0

εsP (s)(k, d, q, φ0)

over all possible combinations of r and k′ �= k can be expressed in a sum of terms, each
involving a certain power of ε. The first one, of course is just the product over all the first
terms in the sum (b0,r + ε eik′φ0), i.e.

P (0)(d, q) =
q∏

r=d+1

bd
0,r (14)

where the power d comes from the fact that there are d different values of k′ = 0, . . . , d ,
k′ �= k. The next few terms are

εP (1)(k, d, q, φ0) = ε

q∏
r=d+1

bd
0,r


 q∑

r=d+1

∑d
k1=0
k1 �=k

eik1φ0

b0,r


 = −ε eikφ0

q∏
r=d+1

bd
0,r

[
q∑

r=d+1

1

b0,r

]

(15)

ε2P (2)(k, d, q, φ0) = 1

2!
ε2

q∏
r=d+1

bd
0,r




q∑
r1=d+1

q∑
r2=d+1
r2 �=r1

(∑d
k1=0
k1 �=k

eik1φ0

)2

b0,r1b0,r2

+
q∑

r=d+1

∑d
k1=0
k1 �=k

∑d
k2=0

k2 �=k,k1

eik1φ0 eik2φ0

b2
0,r




= 1

2!
ε22! ei2kφ0

q∏
r=d+1

bd
0,r

[
q∑

r1=d+2

r1−1∑
r2=d+1

1

b0,r1b0,r2

+
q∑

r=d+1

1

b2
0,r

]
(16)

where we used (9) in (15) and (9) and (10) in (16). The 1/2! term accounts for the times we
double counted terms when performing the double sum. The left-hand side of equation (16)
demonstrates that we have to carefully separate products containing the same index r twice
from those that do not. If the same index r appears twice we need to make sure that we do
not also have the same k1 index twice in the same term. This is because we are trying to find
all possible combinations of sums (b0,r + ε eik′φ0) out of a given pool without multiplying one
with itself. This method can be extended to any power s > 0 of ε:
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P (s)(k, d, q, φ0) = 1

s!

q∏
r=d+1

bd
0,r


s!

q∑
r1=d+s

. . .

rs−1−1∑
rs=d+1

(−eikφ0)s

b0,r1 · · · b0,rs

+

(
s

2

) q∑
r=d+1

(−1)22! ei2kφ0

b2
0,r


(s − 2)!

q∑
r1=d+s−2

r1 �=r

. . .

rs−3−1∑
rs−2=d+1
rs−2 �=r

(−eikφ0)s−2

b0,r1 · · · b0,rs−2

+

(
s − 2

2

) r∑
r1=d+1

−1
(−1)22! ei2kφ0

b2
0,r1

(s − 4)!
q∑

r2=d+s−2
r2 �=r,r1

· · ·

×
rs−4−1∑

rs−3=d+1
rs−4 �=r,r1

(−eikφ0)s−2

b0,r2 · · · b0,rs−3

+ · · ·


 + · · · +

(
s

s

) q∑
r=d+1

(−1)ss! eiskφ0

bs
0,r

(s − s)!


 .

Writing down a few of those terms one will soon realize that the binomial coefficients due
to the terms with products in which the same b0,r occurs repeatedly always cancel with the
factorials that stem from the products with different b0,r . We can therefore combine all those
different sums into a single s-dimensional sum:

P (s)(k, d, q, φ0) =
q∏

r=d+1

bd
0,r (−1)s eiskφ0


 q∑

r1=d+1

1

b0,r1

r1∑
r2=d+1

1

b0,r2

. . .

rs−1∑
rs=d+1

1

b0,rs


 . (17)

Applying equation (8) we get

d∑
k=0

eikφ0 eij ′kφ0 eiskφ0 =
d∑

k=0

e2π ik(j ′+1+s)/(d+1)

=
{
(d + 1) if (j ′ + 1 + s)/(d + 1) = 1, 2, . . .

0 else.

Since we have the upper limit of s � d − j ′, the only non-vanishing term is the one with
s = d − j ′, for which also the powers of ε cancel. This allows us to write down the limit of
the expression in square brackets in (12)

lim
ε→0



∑d

k=0 eikφ0 eij ′kφ0εj ′ ∏d
k′=0
k′ �=k

∏q

r=d+1(b0,r + ε eik′φ0)

εd
∏d

k′=0

∏q

r=d+1(b0,r + ε eik′φ0)




= lim
ε→0




d∑
k=0

εj ′−d ei(j ′+1)kφ0

d∏
k′=0
k′ �=k

q∏
r=d+1

(b0,r + ε eik′φ0)




= (d + 1)(−1)d−j ′
q∏

r=d+1

bd
0,r


 q∑

r1=d+1

1

b0,r1

r1∑
r2=d+1

1

b0,r2

. . .

rd−j ′−1∑
rd−j ′=d+1

1

b0,rd−j ′


 .

If we define
{
b′

l0
, . . . , b′

lu

}
as the set of unique blk from the whole set

{
bl0 , . . . , blq

}
, each

associated with a degeneracy dk, we can write (12) in a more general form (dk = 0, if b′
lk

is
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unique, dk = 1, if b′
lk

is singly degenerate, i.e. b′
lk

= blk1 = blk2 , etc).

C
(j,q)

l0,l1,...,lq
=

u∑
k=0

dk∑
j ′=0

(
j + q

j ′

)
b

′j+q−j ′
lk

(−1)dk−j ′

∏u
r=0
r �=k

(
b′

lk
− b′

lr

)dk(dr +1)

∏u
r=0
r �=k

(
b′

lk
− b′

lr

)(dk+1)(dr+1)

×




q∑
r1=0

blr1
�=b′

lk

1(
b′

lk
− blr1

) r1∑
r2=0

blr2
�=b′

lk

1(
b′

lk
− blr2

) · · ·
rdk−j ′−1∑
rdk−j ′=0

blr
dk−j ′ �=b′

lk

1(
b′

lk
− blr

dk−j ′

)



=
u∑

k=0

dk∑
j ′=0

(
j + q

j ′

)
b

′j+q−j ′
lk

D
(j ′,q)

l0,l1,...,lq
(18)

where

D
(j ′,q)

l0,l1,...,lq
= (−1)dk−j ′

u∏
r=0
r �=k

1(
b′

lk
− b′

lr

)(dr+1)

×




q∑
r1=0

blr1
�=b′

lk

1(
b′

lk
− blr1

) r1∑
r2=0

blr2
�=b′

lk

1(
b′

lk
− blr2

) . . .

rdk−j ′−1∑
rdk−j ′=0

blrdk−j ′ �=b′
lk

1(
b′

lk
− blr

dk−j ′

)
︸ ︷︷ ︸

dk−j ′




.

If dk = q , which means that bl0 = bl1 = · · · = blq = b′
l0

, then D
(j ′,q)

l0,l1,...,lq
= δdk,j ′ = δq,j ′ .

This result can now be used in (3)

Sn,m = lim
p→∞

p∑
j=0

λj

j !


bj

nδn,m +
j∑

q=1

N∑
l1=1

N∑
l2=1

· · ·
N∑

lq−1=1

an,l1 · · · alq−1,m

×
u∑

k=0

dk∑
j ′=0

(
j

j ′

)
b

′j−j ′
lk

D
(j ′,q)

l0,l1,...,lq




= eλbnδn,m + lim
p→∞

p∑
q=1

N∑
l1=1

N∑
l2=1

· · ·
N∑

lq−1=1

an,l1 · · · alq−1,m

×
p∑

j=q

λj

j !

u∑
k=0

dk∑
j ′=0

(
j

j ′

)
b

′j−j ′
lk

D
(j ′,q)

l0,l1,...,lq

s=j−q= eλbnδn,m +
∑
q�1

N∑
l1=1

N∑
l2=1

· · ·
N∑

lq−1=1

an,l1 · · · alq−1,m

×
u∑

k=0

dk∑
j ′=0

λj ′

j ′!
D

(j ′,q)

l0,l1,...,lq
lim

p→∞

p−q∑
s=0

λs+q−j ′

(s + q − j ′)!
b

′s+q−j ′
lk
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= eλbnδn,m +
∑
q�1

N∑
l1=1

N∑
l2=1

· · ·
N∑

lq−1=1

an,l1 · · · alq−1,m

×
u∑

k=0

dk∑
j ′=0

λj ′

j ′!
D

(j ′,q)

l0,l1,...,lq


eλb′

lk −
q−j ′−1∑

r=0

(
λb′

lk

)r
r!


 . (19)

For a finite maximum value of q this expression has a finite number of terms. For the case
that all blk = bn are equal, because of D

(j ′ ,q)

l0,l1,...,lq
= δq,j ′ we get

Sn,m = eλbn


δn,m +

∑
q�1

λq

q!

N∑
l1=1

N∑
l2=1

· · ·
N∑

lq−1=1

an,l1 · · · alq−1,m


 . (20)

If Bn,m = bδn,m, i.e. a diagonal matrix with the same entry for every element along the
diagonal, the exponential term is independent of the combination of l1, . . . , lq−1 and we get

Sn,m = eλb

∞∑
i=0

λi

i!
(Ai)n,m ⇒ S = eλB eλA.

This is simply the result for two commuting matrices A and B, where eλ(B+A) = eλB eλA, as
one would expect, because A commutes with any diagonal matrix that has a constant value
along the diagonal.

3. Example: approximation and inversion of LACBED patterns

The convergence of expression (19) strongly depends on the form of the matrices A and B and
the value of the parameter λ and must therefore be examined for the particular application of
interest.

The S-matrix notation is a fundamental mathematical tool in quantum scattering theory.
For a review of inverse problems in quantum scattering the reader is referred to [6], where
its theory, application and inverse problems are discussed in detail. In high energy electron
scattering the condition that large elements of B are larger than those of A is usually satisfied,
making this problem a practical application of this expansion [3–5].

Based on the Bloch wave solution to the relativistic multiple scattering Schrödinger
equation of high energy scattering of electrons by the crystal potential [7, 8] the intensity of
any point in an electron diffraction pattern defined by the reciprocal lattice vector �gn of the
particular diffraction spot and the tangential component of the incident electron wavevector
�kt is given by the modulus squared of the element of the scattering matrix |S(�kt )n,m|2, where
�gm = 0

|S(�kt )n,m|2 = [exp{iT (A + B(�kt ))}]n,m · [exp{−iT (A∗ + B(�kt ))}]n,m (21)

where A is a square matrix with the reciprocal space potential energy terms An,m = U�gn−�gm

as its off-diagonal elements and zeros along its diagonal. Here U�g are scaled Fourier
coefficients of the crystal potential (structure factors). B is a diagonal matrix with
terms Bn,n = −(| �gn|2 + �gn · �kt ) related to the kinetic energy part of the Schrödinger
equation along its diagonal, and T = πλt , where λ is the electron wavelength, and t
the thickness of the sample. The 17-beam A matrix of GaAs(011) for the reciprocal
lattice vectors �g[1̄3̄3], �g[13̄3], �g[4̄00], �g[3̄1̄1], �g[31̄1], �g[02̄2], �g[1̄1̄1], �g[11̄1], �g[000], �g[1̄11̄], �g[111̄],

�g[022̄], �g[3̄11̄], �g[311̄], �g[400], �g[1̄33̄] and �g[133̄] (| �g[1̄3̄3]| = 0.7709 Å
−1

, | �g[4̄00]| = 0.7075 Å
−1

,
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Figure 1. Successive approximation of the intensity in a GaAs(110) LACBED disc at �g = [3̄1̄1]
for an electron energy of 200 keV (λ = 0.0251 Å) and a thickness of 70 Å. The intensity has been
calculated using expression (22) including terms up to orders (a) q = 2, (b) q = 3, (c) q = 4,
(d) q = 5, and (e) q = 6 in the approximation of |S(�kt )n,m|2. ( f ) shows the correct result including
all orders for comparison. The colour scale is shown in figure 2.

| �g[3̄1̄1]| = 0.5866 Å
−1

, | �g[02̄2]| = 0.5003 Å
−1

, | �g[11̄1]| = 0.3063 Å
−1| �g[000]| = 0 Å

−1
) has 38

distinct structure factors (if absorption is included in the calculation)

A17 =




0 U1 U2 U3 U4 · · · U10 U11 U12 U13 U14

U15 0 U16 U17 U18 · · · U24 U25 U26 U27 U13

U18 U4 0 U28 U6 · · · U32 U5 U33 U26 U12

...
...

...
...

...
. . .

...
...

...
...

...

U24 U10 U38 U23 U32 · · · U21 U34 0 U16 U2

U13 U14 U10 U11 U12 · · · U2 U3 U4 0 U1

U27 U13 U24 U25 U26 · · · U16 U17 U18 U15 0




.

In order to give an idea of the size of the elements in A, we will show some of their moduli
here: 



0 0.0012 0.0238 · · · 0.0177 0.0168 0.0012
0.0012 0 0.0177 · · · 0.0238 0.0012 0.0168
0.0238 0.0177 0 · · · 0.0186 0.0238 0.0177

...
...

...
. . .

...
...

...

0.0177 0.0238 0.0186 · · · 0 0.0177 0.0238
0.0168 0.0012 0.0238 · · · 0.0177 0 0.0012
0.0012 0.0168 0.0177 · · · 0.0238 0.0012 0




Å
−2

.

This also exhibits the symmetries in A for the case of a non-centrosymmetric crystal without
absorption in which case A is Hermitian and also has symmetry across the anti-diagonal,
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Figure 2. Successive approximation of the intensity in a GaAs(110) LACBED disc at �g = [3̄1̄1]
for an electron energy of 200 keV (λ = 0.0251 Å) and a thickness of 70 Å using the Taylor
expansion of the matrix exponential. The complex amplitude has been calculated using expression
(2) including terms up to order (a) p = 5, (b) p = 10, (c) p = 20, (d ) p = 40 and (e) p = 80,
whose modulus has then been squared to give the intensity. The colour scheme used in this figure,
as well as figure 1, is shown on the bottom right. For large values of |�kt | the approximated results
exceeded the colour scale (up to values of 1012) in plots (a) through (d ) and had to be plotted in
the colour representing the upper cut-off value.

a property of equation (1). The largest structure factor modulus is |U5| = 0.0642 Å−2. There
is no restriction on the phases of the U�g. At 200 keV the electron wavelength is 0.0251 Å, so
that for a thickness of t = 70 Å T = πλt ≈ 5.515 Å2.

Since in this example we can only measure the diffraction intensity directly, i.e. |S(�kt )n,m|2
for a certain n, the modulus squared of (19) has to be taken as

∣∣Sn,m

∣∣2 = δn,m +
∞∑

q=2

N∑
l1,...,lq−2=1

q−1∑
p=1

U�gn−�gl1
. . . U�glp−1 −�gm

U∗
�gn−�glp

· · ·

× U∗
�glq−2 −�gm

C
p

n,l,...,lp−1,m

(
C

q−p

n,lp ,...,lq−2,m

)∗
+ 2 Re


 ∞∑

q=1

N∑
l,l2,...,lq−1=1

U�gn−�gl
U�gl−�gl2

· · · U�glq−1−�gm
C

q

n,l,...,lq−1,m


 δn,m. (22)

For diffraction discs other than the central beam n �= m, so that the terms including δn,m drop
out.

Equation (22) achieves the separation of the multiple scattering series into a set of linear
equations involving a product of terms consisting only of structure factors U�g , and terms in
C

q

n,l1,...
involving only known structural constants. These linear equations may therefore be

inverted.
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Figure 3. Approximation of LACBED data. The difference of simulated data for reflection [3̄1̄1]
and the sum of ‘phase-less’ terms (see text) is approximated by an increasing number of terms:
(a) one term, (b) five terms and (c) 80 terms. The real and imaginary part of the first, fifth and
eightieth term along with the expression for the U�g polynomials are shown in the two plots on
the left of each figure. The third plot shows the accumulated intensity of all the terms up to the
current one (i.e. (a) the first term only, (b) the first five terms and (c) the first 80 terms). The exact
result is plotted on the far right of each row for comparison using the same colour scheme. The
intensity of every expansion term, as well as the exact data has been offset by its value at �kt = 0.
The convergence angle is 50 mrad, thickness 40 Å, and the accelerating voltage 200 kV. The 17 ×
17 A matrix contains 38 unique structure factors.

Figure 1 demonstrates the convergence of expression (22) for the case of the 17-beam
GaAs(110) matrix and n = 4, i.e. �g = [3̄1̄1]. Every data point within the large-angle
convergent beam electron diffraction (LACBED) discs (convergence angle of 50 mrad) is
the modulus squared of a single element in S(�kt )n,m (in this case |S(�kt )4,9|2) as function
of the x- and y-components of the incident electron beam wavevector �k. The first nonzero
terms for n �= m are those with q = 2, involving products of elements of A of length 2,
i.e.

∑
n1,n2

Un1U
∗
n2

f (�kt ), where f (�kt ) is the well-defined product of two C-coefficients.
Figure 1(b) includes these q = 2 terms as well as those with q = 3 (containing products
of elements of A of length 3). At q = 6 (figure 1(e)) the approximation shows already very
good agreement with the exact result (figure 1( f )), which has been calculated using matrix
diagonalization.

In contrast, figure 2 illustrates the use of the Taylor expansion of the matrix exponential
for the same test case. Expression (2) has been used to approximate the matrix exponential for
each point in the two-dimensional �kt vector space. The modulus squared of element S(�kt )4,9
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has then been plotted. Note, that by squaring a polynomial of order p, we also include terms
of order 2p, i.e. also products of structure factors of length 2p, whereas the value of q in
expression (22) defines the true degree of polynomials of elements of A used in the expansion.
Plots (a) through (d ) in figure 2 show that the Taylor expansion converges first for small values
of |�kt |, which makes sense, because the elements of B (Bn,n = −[| �gn|2 + �gn · �k]) are small,
if |�kt | is small. Since polynomials of elements of B associated with a certain polynomial of
A-elements are included to all orders in expressions (19) and (22), this ‘selective convergence
behaviour’ cannot be observed there.

We now consider electron diffraction experiments in which data from very thin crystals
have been used to measure the moduli of the structure factors, and it remains to determine
their phases, that is, to solve the phase problem. This can be done up to an arbitrary origin-
dependent phase factor as follows. Since certain products of U�g (e.g. U1U

∗
1 , or U2U3U

∗
2 U∗

3 )
can be determined without knowledge of the phase of any of their members, because their
phases cancel, we can calculate the contribution of all those terms and then subtract it from
the experimental data. Figure 3 shows the approximation of this difference between simulated
LACBED data and the sum of all the ‘phase-less’ terms in the expansion. Terms up to q = 4
have been included. Other than the thickness the computational parameters are the same as
for figures 1 and 2, the thickness is t = 40 Å. The first two plots in each row show the function
f (�kt ) (product of two C-coefficients, as shown in expression (22)) and the corresponding
U�g-polynomial, split into real and imaginary parts. The third plot shows the sum of all those
terms for a total of 1(2), 5(10) and 80(160) terms (number in parentheses, if real and imaginary
parts are counted separately). Since for a large enough range in �kt vector space all the f (�kt )

are linearly independent, the polynomials Re/Im
(
Un1 . . . U∗

nq

)
can be determined individually

by solving the set of linear equations, and therefore also their phases.

4. Conclusion

A new expansion for the general matrix exponential of two non-commuting matrices, one
of which is diagonal, has been derived, which works up to any order. Many problems
involving the solution of the time-dependent or time-independent Schrödinger equation can
be expressed in the form of such matrix exponentials by writing the potential and kinetic
energy terms in separate matrices. The convergence behaviour of this expansion has been
illustrated by applying it to the approximation of multiple scattering of high energy electrons
in a crystal. It has been shown how this expansion can be applied for solving the phase problem
in multiple scattering experiments by expanding the set of nonlinear equations with a finite
system of linear equations which can be solved by matrix inversion or other standard linear
equation solvers. In particular, the inversion from two-dimensional rocking curves, which can
be recorded as (LA)CBED patterns with a single exposure in most electron microscopes to
the projected crystal potential has been analysed.
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